A Weak Space-Time Formulation for the Linear Stochastic Heat Equation

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A weak space-time formulation for the linear stochastic heat equation

We apply the well-known Banach-Nečas-Babuška inf-sup theory in a stochastic setting to introduce a weak space-time formulation of the linear stochastic heat equation with additive noise. We give sufficient conditions on the the data and on the covariance operator associated to the driving Wiener process, in order to have existence and uniqueness of the solution. We show the relation of the obta...

متن کامل

A Weak Stochastic Integral in Banach Space with Application to a Linear Stochastic Differential Equation*

Cylindrical Wiener processes in real separable Banach spaces are defined, and an approximation theorem involving scalar Wiener processes is given for such processes. A weak stochastic integral for Banach spaces involving a cylindrical Wiener process as integrator and an operator-valued stochastic process as integrand is defined. Basic properties of this integral are stated and proved. A class o...

متن کامل

Weak order for the discretization of the stochastic heat equation

In this paper we study the approximation of the distribution of Xt Hilbert–valued stochastic process solution of a linear parabolic stochastic partial differential equation written in an abstract form as dXt +AXt dt = Q dWt, X0 = x ∈ H, t ∈ [0, T ], driven by a Gaussian space time noise whose covariance operatorQ is given. We assume that A is a finite trace operator for some α > 0 and that Q is...

متن کامل

A numerical scheme for space-time fractional advection-dispersion equation

In this paper, we develop a numerical resolution of the space-time fractional advection-dispersion equation. We utilize spectral-collocation method combining with a product integration technique in order to discretize the terms involving spatial fractional order derivatives that leads to a simple evaluation of the related terms. By using Bernstein polynomial basis, the problem is transformed in...

متن کامل

A Geometric Space-Time Multigrid Algorithm for the Heat Equation

We study the time-dependent heat equation on its space-time domain that is discretised by a k-spacetree. k-spacetrees are a generalisation of the octree concept and are a discretisation paradigm yielding a multiscale representation of dynamically adaptive Cartesian grids with low memory footprint. The paper presents a full approximation storage geometric multigrid implementation for this settin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Applied and Computational Mathematics

سال: 2016

ISSN: 2349-5103,2199-5796

DOI: 10.1007/s40819-016-0134-2